Bioactive Secondary Metabolites from *Boesenbergia pandurata* of Myanmar and Their Preferential Cytotoxicity against Human Pancreatic Cancer PANC-1 Cell Line in Nutrient-Deprived Medium

Nwet Nwet Win,[†] Suresh Awale,[†] Hiroyasu Esumi,[‡] Yasuhiro Tezuka,[†] and Shigetoshi Kadota^{*,†}

Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan, and National Cancer Center Research Institute East, 6-5-1 Kashiwa, Chiba 277-8577, Japan

Received June 14, 2007

The chloroform extract of rhizomes of *Boesenbergia pandurata* demonstrated marked preferential cytotoxicity against human pancreatic PANC-1 cancer cells in nutrient-deprived medium. Bioactivity-directed investigation of this extract yielded four new secondary metabolites, geranyl-2,4-dihydroxy-6-phenethylbenzoate (1), 2',4'-dihydroxy-3'-(1''-geranyl)-6'-methoxychalcone (2), (1'R,2'S,6'R)-2-hydroxyisopanduratin A (3), and (2R)-8-geranylpinostrobin (4), and twenty known compounds (5–24). Among the known compounds, (2S)-6-geranylpinostrobin (5), (\pm)-6-methoxypanduratin A (6), and (2S)-7,8-dihydro-5-hydroxy-2-methyl-2-(4''-methyl-3''-pentenyl)-8-phenyl-2H,6H-benzo[1,2-b:5,4-b']dipyran-6-one (7) were isolated for the first time from a natural source. The structures of these compounds were elucidated using extensive spectroscopic techniques including CD measurements. All the isolated compounds showed varying degrees of *in vitro* preferential cytotoxicity against PANC-1 cells. Nicolaioidesin B (11) and panduratin A (17) were most potent, each showing a PC₁₀₀ at 2.5 μ M.

Pancreatic cancer is an aggressive disease with the lowest 5-year survival rate of all cancers. It is largely resistant to conventional forms of treatment and the development of more effective treatment is urgently needed. Esumi et al. reported that certain pancreatic cancer cell lines such as PANC-1, AsPC-1, BxPC-1, and KP-3 have remarkable tolerance against extreme nutrient starvation enabling them to survive for prolonged periods of time even in critically low nutrient conditions.¹ Nutrition deprivation is a common consequence in tumors due to depletion of nutrients by the rapidly proliferating tumor cells and low blood supply. Thus, elimination of this tolerance of cancer cells to nutrient starvation might serve as a new biochemical approach in cancer therapy.² Under this hypothesis, we have screened medicinal plants from various origins for the discovery of anticancer agents that preferentially eliminate tumor cell capability to survive under low nutrition conditions using the human pancreatic PANC-1 cancer cell line, a new approach termed antiausterity strategy. Under this strategy, we have screened 500 medicinal plants used in Japanese Kampo medicine, and identified arctigenin³ and angelmarin⁴ as compounds having the ability to eliminate tolerance of cancer cells to nutrient starvation.

Boesenbergia pandurata (Robx.) Schltr. (Syn. Boesenbergia rotunda, Kaempferia pandurata), a perennial herb of the Zingiberaceae family is cultivated in some tropical countries including Myanmar, Indonesia, Malaysia, and Thailand.⁵ It is commonly known as Seik-phoo in Myanmar, and has been extensively used in the traditional medicinal formulation Khu-na-pah-hsay-wa-galay (commonly known as TMF-47) for the treatment of asthma, diarrhea, indigestion, itching, and fever.⁶ It is also a popular folk medicine for the treatment of diseases such as ulcer, dry mouth, stomach discomfort, leucorrhea, and dysentery in Indonesia, Malaysia, and Thailand.⁷ The fresh rhizomes have a characteristic aroma and are used as a flavoring agent in Thai cuisine.⁸ It has also been used as self-medication by AIDS patients in Thailand.9 Previous investigations on B. pandurata reported anti-HIV,10 antibacterial,¹¹ anti-inflammatory, analgesic, antipyretic,^{7,12,13} antitumor,14 antioxidant,15 and insecticidal activities.16 In our present investigation, we isolated twenty-four compounds including four new compounds (1–4) and three known ones (5–7) from a natural source for the first time. In this paper, we also report *in vitro* preferential cytotoxicity of the isolates against the PANC-1 cancer cell line in nutrient-deprived medium (NDM).

Results and Discussion

The 70% EtOH extract of rhizomes of B. pandurata showed 100% preferential cytotoxicity (PC100) against PANC-1 cells in NDM at 10 μ g/mL. Thus, it was separated into CHCl₃ soluble and insoluble fractions by dissolution in CHCl₃. Only the CHCl₃-soluble fraction exhibited activity (PC₁₀₀ at 10 μ g/mL). Thus, it was subjected to series of chromatographic separations which furnished four new secondary metabolites [geranyl-2,4-dihydroxy-6-phenethylbenzoate (1), 2',4'-dihydroxy-3'-(1"-geranyl)-6'-methoxychalcone (2), (1'R, 2'S, 6'R)-2-hydroxyisopanduratin A (3), and (2R)-8geranylpinostrobin (4)], together with twenty known compounds [(2S)-6- geranylpinostrobin (5),¹⁷ (\pm)-6-methoxypanduratin A (6),¹⁸ (2S)-7,8-dihydro-5-hydroxy-2-methyl-2-(4"-methyl-3"-pentenyl)-8-phenyl-2*H*,6*H*-benzo[1,2-*b*:5,4-*b*']dipyran-6-one (7),¹⁹ flavokawain C (8),²⁰ cardamonin (9),²¹ (\pm)-isopanduratin A1 (10),¹⁶ (-)-nicolaioidesin B (11),²² (-)-6-geranylpinocembrin (12),^{17,23} (-)-pinostrobin (13),²⁴ (-)-pinocembrin (14),²⁴ (-)-alpinetin (15),²¹ (-)-7,4'-dihydroxy-5-methoxyflavanone (16),²⁵ (-)-panduratin A (17),¹⁸ (–)-isopanduratin A2 (18),¹⁶ (–)-hydroxypanduratin A (19),⁸ (\pm)-panduratin C (20),¹⁰boesenbergin A (21),²⁴ boesenbergin B (22),²⁶ tectochrysin (23),²⁷ and 5,6-dehydrokawain (24)²⁰].

Compound **1** was obtained as a pale yellow amorphous solid, and its molecular formula was determined as $C_{25}H_{30}O_4$ by HRFABMS. The IR spectrum of **1** showed absorption bands of hydroxyl (3500 cm⁻¹), carbonyl (1640 cm⁻¹), and phenyl (1600, 1420 cm⁻¹) groups. The ¹H NMR spectrum showed signals due to phenyl ring (δ_H 7.28–7.17), a pair of *meta*-coupled aromatic protons (δ_H 6.30, 6.18, J = 2.4 Hz), an oxymethylene (δ_H 4.89), two methylenes (δ_H 3.17, 2.84), and a hydrogen-bonded hydroxyl proton (δ_H 11.80), together with signals ascribable to a geranyl moiety [three vinyl methyls (δ_H 1.72, 1.65, 1.57); two olefinic protons (δ_H 5.45, 5.05); two methylenes (δ_H 2.08–2.00)].²⁸ The ¹³C NMR spectrum revealed 25 signals including those for an ester carbonyl carbon (δ_C 171.3), two oxygenated aromatic carbons (δ_C 165.7, 160.2), two quaternary aromatic carbons (δ_C 147.6, 141.8), two aliphatic methylenes (δ_C 38.5, 38.0), and those of the geranyl

^{*} To whom correspondence should be addressed. Tel: +81-76-434-7625. Fax: +81-76-434-5059. E-mail: kadota@inm.u-toyama.ac.jp.

[†]Institute of Natural Medicine, University of Toyama.

^{*} National Cancer Center Research Institute East.

^{10.1021/}np070286m CCC: \$37.00 © 2007 American Chemical Society and American Society of Pharmacognosy Published on Web 09/27/2007

moiety.²⁸ Analyses of the COSY and HMQC spectra revealed the partial structure (bold lines) as shown in Figure 1a, which were connected based on the long-range correlations observed in the HMBC spectrum. The HMBC correlations between H- α and C-1' $(\delta_{\rm C} 141.8)$, and H- β and C-2',6' $(\delta_{\rm C} 128.4)$ indicated the presence of a phenethyl group. Furthermore, HMBC of H- α with C-1 ($\delta_{\rm C}$ 105.5), C-5 ($\delta_{\rm C}$ 110.9), and C-6 ($\delta_{\rm C}$ 147.6) suggested the connectivity between them at C-6. The hydrogen-bonded OH proton signal at $\delta_{\rm H}$ 11.80 (2-OH) indicated that the ester carbonyl carbon was at C-1. Further, HMBC correlations between 4-OH and C-3, C-4, and C-5, between 2-OH and C-1, C-2, and C-3, between H-3 and C-2 and C-4, and between H-5 and C-1, C-3, and C-4 placed the hydroxyl groups at C-2 and C-4, respectively. Finally, the HMBC correlation between H-3" ($\delta_{\rm H}$ 4.89) of the geranyl moiety and ester carbonyl carbon (C-1") indicated that 1 was geranyl-2,4dihydroxy-6-phenethylbenzoate.

Compound **2** was obtained as yellow oil and its molecular formula was found to be $C_{26}H_{30}O_4$ by HRFABMS. The IR spectrum of **2** showed absorptions due to hydroxyl and carbonyl groups. The ¹H NMR spectrum of **2** showed signals due to a phenyl group (δ_H 7.61 and 7.39), a pair of *trans* olefinic protons (δ_H 7.91, 7.78, J =15.6 Hz), an aromatic proton (δ_H 5.95), a methoxyl group (δ_H 3.91), a hydrogen-bonded hydroxyl proton (δ_H 14.59), and signals due to a geranyl moiety. The ¹³C NMR spectrum showed 26 signals including those for a ketone carbonyl carbon (δ_C 192.9) and three oxygenated aromatic carbons (δ_C 165.1, 162.4, 161.3). These data closely resembled those of 2',4',6'-trihydroxy-3'-(1''-geranyl)chalcone^{23,29} except for the appearance of a methoxyl group (δ_H 3.91) instead of a hydroxyl group ($\delta_{\rm H}$ 9.46).^{23,29} Finally, the methoxyl group was determined to be at C-6' based on the HMBC correlation between the methoxyl protons and C-6' (Figure 1b). Thus, **2** was concluded to be 2',4'-dihydroxy-3'-(1"-geranyl)-6'-methoxychalcone.

Compound 3 was isolated as a pale yellow amorphous solid with $[\alpha]^{25}_{D}$ +7.6. Its molecular formula (C₂₅H₂₈O₄) was deduced from HRFABMS. The IR spectrum of 3 indicated the presence of hydroxyl and carbonyl groups. The ¹H NMR spectrum displayed signals corresponding to a phenyl group ($\delta_{\rm H}$ 7.14, 7.06), two magnetically equivalent aromatic protons ($\delta_{\rm H}$ 5.80, br s), two olefinic methine protons ($\delta_{\rm H}$ 5.47, 4.80), three aliphatic methines $(\delta_{\rm H} 4.77, 3.49, 2.23)$, two allylic methylenes $(\delta_{\rm H} 2.61, 2.04,$ 2.02–1.85), and three vinyl methyls ($\delta_{\rm H}$ 1.74, 1.57, 1.42). Its ¹³C NMR spectrum indicated the presence of a ketone carbonyl carbon $(\delta_{\rm H} 210.7)$, 12 aromatic carbons, four olefinic carbons $(\delta_{\rm H} 138.5)$, 131.3, 124.9, 121.4), three methine carbons ($\delta_{\rm H}$ 47.5, 47.0, 44.4), two methylenes ($\delta_{\rm H}$ 31.9, 29.1), and three vinyl methyls ($\delta_{\rm H}$ 26.1, 23.3, 17.9). These data were similar to those of isopanduratin A1 $(10)^{16}$ except for the absence of signals due to a methoxyl group at C-2 in 10 ($\delta_{\rm H}$ 3.95; $\delta_{\rm C}$ 56.5). Thus, compound 3 was assumed to be 2-hydroxyisopanduratin A, which was confirmed by the HMBC spectrum (Figure 1c). The configuration of 3 was determined from the coupling constant data and the ROESY analysis. The large coupling constant between H-1' and H-6' (J = 11.9 Hz) indicated that they should be in trans-diaxial orientation and the small coupling constant between H-1' and H-2' (J = 5.1 Hz)indicated their cis relationship. This was further supported by the

Figure 1. COSY (bold lines) and HMBC ($^{1}H \rightarrow {}^{13}C$) (arrows) correlations in 1 (a), 2 (b), 3 (c), and 4 (e), and ROESY (dashed arrows) correlations in 3 (d).

ROESY correlations H-1'/H-2', H-1'/H-2''', H-6''', H-2'/H₃-3', H-6'/ H-5'b, H-6'/H-2'', and H-6'/H-2''', H-6''' (Figure 1d). The absolute configuration of **3** was elucidated by applying the exciton chirality rule. Compound **3** showed negative Cotton effects ($[\theta]_{285} - 3052$, $[\theta]_{235} + 2442$) suggesting the absolute chirality between the phenyl chromophore at C-1' and the 2,4,6-trihydroxy-benzoyl chromophore at C-6' was in *M* helical twist (Supporting Information, Figure S3).^{30,31} Therefore, the structure of compound **3** was assigned as (1'*R*,2'*S*,6'*R*)-2-hydroxyisopanduratin A.

Compounds 4 and 5 were obtained as yellow oils with $[\alpha]^{25}_{D}$ -35.3 and -5.3, respectively. The HRFABMS indicated that they had the same molecular formula ($C_{26}H_{30}O_4$). Their ¹H and ¹³C NMR data were also similar, and showed signals for a methylene and an oxymethine characteristic of flavanones, a hydrogen-bonded hydroxyl group, a geranyl group, a methoxyl group, an aromatic singlet, and a phenyl group. These data closely resembled those of 6-geranylpinocembrin (12),^{17,23} except for the presence of one methoxyl group in both 4 and 5 ($\delta_{\rm H}$ 3.85, s; $\delta_{\rm C}$ 55.9), suggesting that these are flavanone derivatives having geranyl side chains. Analysis of the HMBC spectra indicated the methoxyl group to be at C-7 in 4 and 5, and the geranyl unit to be at C-8 in 4 and at C-6 in 5, respectively (Figures 1e and S2a). The literature survey indicated 4 to be a new compound, while 5 was reported as a semisynthetic product by Johannes et al.¹⁷ However, the reported ¹H NMR data ($\delta_{H-4''}$ 1.57, $\delta_{H-9''}$ 1.80, and $\delta_{H-10''}$ 1.65) should be revised as $\delta_{H-4''}$ 1.76, $\delta_{H-9''}$ 1.64, and $\delta_{H-10''}$ 1.54. Finally, the absolute configuration of both 4 and 5 was determined by analyses of the CD spectra. Compounds 4 and 5 displayed opposite Cotton effects (4: $[\theta]_{288}$ +1740, $[\theta]_{276}$ -269; 5: $[\theta]_{288}$ -580, $[\theta]_{276}$ +510), indicating the absolute configuration at C-2 to be R in 4 and S in 5.³² Thus, the structures of 4 and 5 were concluded to be (2R)-8geranylpinostrobin and (2S)-6-geranylpinostrobin, respectively.

Compound **7** was isolated as a pale yellow amorphous solid with molecular formula $C_{25}H_{26}O_4$. Analysis of NMR data indicated **7** to be 7,8-dihydro-5-hydroxy-2-methyl-2-(4"-methyl-3"-pentenyl)-8-phenyl-2*H*,6*H*-benzo[1,2-*b*:5,4-*b*']dipyran-6-one, previously synthesized by Bandaranayake et al.¹⁹ However, we isolated **7** as a natural product for the first time and assigned its ¹H and ¹³C NMR

Table 1. Preferential Cytotoxicity of Compounds 1–24 onHuman Pancreatic PANC-1 Cancer Cells in Nutrient-DeprivedMedium

compound	$PC_{100} \ [\mu M]^a$
1, 2, 3, 18, 19	16
4, 5	128
6, 7, 14, 21, 22	64
10, 12	8
8, 9, 13, 15, 16, 20, 23, 24	>256
11, 17	2.5
Taxol	>256
Arctigenin ^b	1

^{*a*} The concentration at which 100% cancer cell death occurred preferentially in nutrient-deprived medium (NDM). ^{*b*} Positive control.

data through 2D NMR analysis (Figure S2c). Compound 7 displayed negative Cotton effect at 290 nm, indicating the configuration at C-2 to be $S.^{32}$

Among the compounds isolated from the rhizomes of B. pandurata of Myanmar, 1-4 were new and 5-7 were isolated for the first time from a natural source. Preferential cytotoxicity of all isolated compounds was evaluated against the human pancreatic cancer (PANC-1) cell line and they showed activity in a concentration-dependent manner (Table 1). Compounds 11 and 17 were the most potent, each showing a PC₁₀₀ value at 2.5 μ M. Activities of the other compounds were observed in the following order: 10, 12 > 1, 2, 3, 18, 19 > 6, 7, 14, 21, 22 > 4, 5 > 8, 9, 13, 15, 16, 20,23, 24. In general, the cyclohexenyl chalcone derivatives were more active than the other compounds, with the exception of 20. The presence of a methoxyl group at C-4 and hydroxyls at C-2 and C-6 in cyclohexenyl chalcones seem to be important for activity (e.g., 11, 17 >> 3, 18, 19). Among the flavonoids, the compounds possessing a geranyl moiety showed stronger activity (e.g., in the chalcone, 2 >> 8, 9; in the flavanone 4, 5 >> 13, 15, 16). Arctigenin, an antiausterity-based anticancer agent³ was used as a positive control in this study (PC₁₀₀ at 1 μ M). Paclitaxel (Taxol), a well known anticancer agent, was virtually inactive against PANC-1 cells (PC₁₀₀ > 256 μ M), consistent with our earlier observations (PC₁₀₀ > $3000 \mu g/L$).²

Bioactive Secondary Metabolites from Boesenbergia pandurata

Nicolaioidesin B (11) had been reported for quinone reductase activity with cultured Hepa lacla7 mouse hepatoma cells.²² On the other hand, panduratin A (17) had been reported for its antiinflammatory activity in RAW 264.7 cells,¹² cytotoxicity against androgen-independent human prostate cancer cells PC3 and DU 145,¹⁴ cytotoxicity induced by *t*-BHP in human hepatoma cells,³³ inhibitory activity against dengue-2 Virus N93 protease,³⁴ and anti-HIV-1-protease activity.¹⁰ In this study we found cytotoxic activity against human PANC-1 cancer cells. These results suggest that cyclohexenyl chalcone derivatives warrant further study against pancreatic cancer in animal models.

Experimental Section

General Experimental Procedures. Optical rotations were recorded on a JASCO DIP-140 digital polarimeter. CD measurements were carried out on a JASCO J-805 spectropolarimeter. IR spectra were measured with a Shimadzu IR-408 spectrophotometer in CHCl₃. NMR spectra were taken on a JEOL JNM-LA400 spectrometer with tetramethylsilane (TMS) as an internal standard, and chemical shifts are expressed in δ values. FABMS and HRFABMS measurements were carried out on a JEOL JMS-700T spectrometer and glycerol was used as matrix. Column chromatography was performed with normal-phase silica gel (Silica Gel 60N, Spherical, neutral, 40–50 μ m, Kanto Chemical Co., Inc). Analytical and preparative TLC was carried out on precoated silica gel 60F₂₅₄ and RP-18F₂₅₄ plates (Merck, 0.25 or 0.50 mm thickness). HPLC was performed with a SUPELCO Discovery C-18 column (25 × 10 mm, 5 μ m) using Shimadzu LC-6AD, Jasco-OR-2090-Plus Chiral detector.

Plant Material. Rhizomes of *Boesenbergia pandurata* (Roxb.) Schult. were collected from Pindaya Township, Shan State, Myanmar in November 2004. A voucher specimen (TMPW 251155) was deposited at the Museum for Materia Medica, Analytical Research Center for Ethnomedicines, Institute of Natural Medicine, University of Toyama, Japan.

Extraction and Isolation. The rhizomes of *B. pandurata* (150 g) were extracted with 70% EtOH under sonication (800 mL, 90 min, $3\times$) at room temperature and the solvent was evaporated under reduced pressure to give 18 g of extract, which was again sonicated with CHCl₃ (25 mL, 90 min, $3\times$) to give CHCl₃ soluble (10 g) and insoluble (8 g) fractions.

The CHCl₃ soluble fraction was chromatographed on silica gel with a EtOAc–hexane solvent system to give seven fractions [1: EtOAc–hexane (15:85) eluate, 3.88 g; 2: EtOAc–hexane (30:70) eluate, 2.16 g; 3: EtOAc–hexane (40:60) eluate, 0.35 g; 4: EtOAc–hexane (50:50) eluate, 0.38 g; 5: EtOAc–hexane (75:25) eluate, 0.32 g; 6: EtOAc–hexane (100: 0) eluate, 1.24 g; 7: MeOH eluate, 1.11 g].

Fraction 1 (3.88 g) was rechromatographed on silica gel with EtOAc-hexane to give three subfractions [1-1: EtOAc-hexane (5:95) eluate, 2.23 g; 1-2: EtOAc-hexane (10:90) eluate, 302 mg; 1-3: EtOAc-hexane (15:85) eluate, 1.35 g]. Subfraction 1-2 (302 mg) was subjected to normal-phase preparative TLC with hexane-Me₂CO (3: 1), followed by reverse-phase preparative TLC with Me₂CO-H₂O (7: 1), to give geranyl-2,4-dihydroxy-6-phenethylbenzoate (1, 4.8 mg), (2R)-8-geranylpinostrobin (4, 30 mg), (2S)-6-geranylpinostrobin (5, 3.9 mg), (\pm) -6-methoxypanduratin A (6, 3.3 mg), (2S)-7,8-dihydro-5hydroxy-2-methyl-2-(4"-methyl-3"-pentenyl)-8-phenyl-2H,6H-benzo[1,2b:5,4-b']dipyran-6-one (7, 6.2 mg), flavokawain C (8, 1.3 mg), (-)-6-geranylpinocembrin (12, 4.9 mg), boesenbergin A (21, 3.2 mg), and boesenbergin B (22, 2.5 mg). Subfraction 1-3 (1.35 g) [EtOAc-hexane (15:85) eluate] was left overnight, which gave the crystals of (-)pinostrobin (13, 1 g). The mother liquor (100 mg) was subjected to normal-phase preparative TLC with C₆H₆-Me₂CO (9:1), followed by reverse-phase preparative TLC with Me₂CO-H₂O (3:1), to give 2',4'dihydroxy-3'-(1"-geranyl)-6'-methoxychalcone (2, 1.9 mg) and (-)pinocembrin (14, 20 mg).

Fraction 2 (2.16 g) was rechromatographed on silica gel with EtOAc-hexane (1:4) to afford four subfractions [2–1, 129 mg; 2–2, 134 mg; 2–3, 587 mg; 2–4, 1.31 g]. Subfraction 2–3 was further purified by repeated preparative HPLC with CH₃CN–H₂O–trifluoroacetic acid (TFA) (80:20:0.2) [column: Discovery C-18, Supelco; flow rate: 5 mL/ min] to give tectochrysin (**23**, 30 mg; t_R 2.4 min), (–)-panduratin A (**17**, 95 mg; t_R 8 min), (±)-isopanduratin A1 (**10**, 20 mg; t_R 8.5 min), and (–)-nicolaioidesin B (**11**, 19 mg; t_R 8.8 min).

Fraction 3 (0.35 g) was rechromatographed on silica gel with EtOAc–hexane (1:2) to afford four subfractions [3–1, 56 mg; 3–2, 150 mg; 3–3, 35 mg; 3–4, 20 mg]. Subfraction 3–2 on recrystallization in hexane–CH₂Cl₂ (7:3), gave (-)-isopanduratin A2 (**18**, 85 mg).

Fraction 4 (0.38 g) was dissolved in CHCl₃-hexane (3:7) and left overnight to give 5,6-dehydrokawain (**24**, 180 mg). After separation of the crystals, the mother liquor (200 mg) was purified by preparative HPLC with CH₃CN-H₂O-TFA (80:20:0.2) solvent system [column: Discovery C-18, Supelco; flow rate: 5 mL/min] to give (-)-hydroxylpanduratin A (**19**, 29.8 mg; t_R 58 min) and (1'*R*,2'*S*,6'*R*)-2-hydroxyisopanduratin A (**3**, 18 mg; t_R 60.8 min).

Fraction 5 (0.32 g) was dissolved in CHCl₃–MeOH (99:1) and left overnight to give crystals of cardamonin (9, 150 mg). After separation of the cardamonin, the mother liquor (150 mg) was subjected to preparative HPLC with CH₃CN–H₂O–TFA (80:20:0.2) [column: Discovery C-18, Supelco; flow rate: 2 mL/min] to give (\pm)-panduratin C (**20**, 10 mg; *t*_R 15.58 min).

(-)-Alpinetin (15, 80 mg) and (-)-7,4'-dihydroxy-5-methoxyflavanone (16, 30 mg) were obtained directly from fraction 6 (EtOAc eluent).

Geranyl-2,4-dihydroxy-6-phenethylbenzoate (1): pale yellow amorphous solid; IR ν_{max} 3500, 1640, 1600, 1500, 1420, 1050 cm⁻¹; ¹H NMR (CDCl₃) δ 11.80 (1H, s, 2-OH), 7.28 (2H, m, H-3',5'), 7.17 (3H, m, H-2',6'; H-4'), 6.30 (1H, d, J = 2.4 Hz, H-3), 6.18 (1H, d, J = 2.4 Hz, H-5), 5.45 (1H, t, J = 7.3 Hz, H-4''), 5.21 (1H, s, 4-OH), 5.05 (1H, t, J = 7.3 Hz, H-9''), 4.89 (2H, d, J = 7.3 Hz, H-3''), 3.17 (2H, m, H- α), 2.84 (2H, m, H- β), 2.08–2.00 (4H, m, H-7'', H-8''), 1.72 (3H, s, CH₃-6''), 1.65 (3H, s, CH₃-11''), 1.57 (3H, s, CH₃-12''); ¹³C NMR (CDCl₃) δ 171.3 (C-1''), 165.7 (C-2), 160.2 (C-4), 147.6 (C-6), 143.5 (C-5''), 141.8 (C-1'), 131.9 (C-10''), 128.4 (C-2',6'; C-4'), 125.9 (C-3',5'), 123.6 (C-9''), 117.7 (C-4''), 110.9 (C-5), 105.5 (C-1), 101.7 (C-3), 62.2 (C-3''), 39.5 (C-7''), 38.5 (C- α), 38.0 (C- β), 26.2 (C-8''), 25.6 (C-11''(C-12'' (C-6''); HRFABMS *m/z* 395.2220 (calcd for C₂₅H₃₁O₄, 395.2222).

2',4'-Dihydroxy-3'-(1''-geranyl)-6'-methoxychalcone (2): yellow oil; IR ν_{max} 3500, 1620, 1500, 1420, 1260, 1200, 1050, 920 cm⁻¹; ¹H NMR (CDCl₃) δ 14.59 (1H, s, 2'-OH), 7.91 (1H, d, J = 15.6 Hz, H- α), 7.78 (1H, d, J = 15.6 Hz, H- β), 7.61 (2H, m, H-3, 5), 7.39 (3H, m, H-2, 6; H-4), 6.12 (1H, br s, 4'-OH), 5.95 (1H, s, H-5'), 5.21 (1H, t, J = 6.6 Hz, H-2''), 5.06 (1H, t, J = 6.6 Hz, H-7''), 3.91 (3H, s, 6-'OCH₃), 3.43 (2H, d, J = 7.3 Hz, H-1''), 2.17–2.10 (4H, m, H₂-5'', H₂-6''), 1.82 (3H, s, CH₃-4''), 1.69 (3H, s, CH₃-9''), 1.60 (3H, s, CH₃-10''); ¹³C NMR (CDCl₃) δ 192.9 (C=O), 165.1 (C-2'), 162.4 (C-4'), 161.3 (C-6'), 142.0 (C- β), 139.9 (C-3'), 135.7 (C-1), 132.2 (C-8''), 129.9 (C-4), 128.3 (C-3'), 127.9 (C- α), 123.7 (C-7''), 121.6 (C-2''), 106.2 (C-3''), 101.9 (C-1'), 91.3 (C-5'), 55.8 (6'-OMe), 39.7 (C-5''), 26.3 (C-6'), 25.6 (C-9''), 21.6 (C-1''), 17.7 (C-10''), 16.3 (C-4''); HRFABMS *m*/z 407.2223 (calcd for C₂₆H₃₁O₄, 407.2222).

(1'R,2'S,6'R)-2-Hydroxyisopanduratin A (3): pale yellow amorphous solid; $[\alpha]^{25}_{D}$ +7.6 (c 4.6, MeOH); IR (CHCl₃) ν_{max} 3500, 3400–3100, 1630, 1160 cm⁻¹; CD (c 2.549 × 10⁻⁴ M, EtOH) $[\theta]_{285}$ -3052, [θ]₂₃₅ +2442; ¹H NMR (CD₃OD) δ 7.14 (2H, m, H-2"',6" Έ), 7.06 (3H, m, H-3^{'''}, 5^{'''}; H-4^{'''}), 5.80 (2H, br s, H-3,5), 5.47 (1H, br s, H-4′), 4.80 (1H, t, J = 7.0 Hz), 4.77 (1H, ddd, J = 6.0, 11.9, 11.9 Hz, H-6'), 3.49 (1H, dd, J = 5.1, 11.9 Hz, H-1'), 2.61 (1H, dt, J = 1.9, 6.0, 17.3 Hz, H-5'b), 2.23 (1H, dd, J = 5.1, 9.8 Hz, H-2'), 2.04 (1H, ddd, J = 1.9, 11.9, 17.3 Hz, H-5'a), 2.02–1.85 (2H, m, H-1"), 1.74 (3H, s, 3'-CH₃), 1.57 (3H, s, CH₃-4"), 1.42 (3H, s, CH₃-5"); ¹³C NMR (CD₃OD) δ 210.7 (C-7), 165.9 (C-2,6; C-4), 144.9 (C-1"'), 138.5 (C-3'), 131.3 (C-3"), 129.4 (C-3"",5""), 128.9 (C-2"",6""), 126.6 (C-4""), 124.9 (C-2"), 121.4 (C-4'), 106.1 (C-1), 95.9 (C-3), 95.8 (C-5), 47.5 (C-1'), 47.0 (C-2'), 44.4 (C-6'), 31.9 (C-5'), 29.1 (C-1"), 26.1 (C-4"), 23.3 (3'-CH₃), 17.9 (C-5"); HRFABMS m/z 393.2056 (calcd for C25H29O4, 393.2066).

(2*R*)-8-Geranylpinostrobin (4): pale yellow oil; $[\alpha]^{25}_{\text{D}} - 35.3$ (*c* 0.626, CHCl₃); IR ν_{max} 3500, 1630, 1510, 1430, 1200, 1050, 930 cm⁻¹; CD (*c* 2.461 × 10⁻⁴ M, EtOH) $[\theta]_{288}$ +1740, $[\theta]_{276}$ -269; ¹H NMR (CDCl₃) δ 12.12 (1H, s, 5-OH), 7.42 (5H, m, Ph-H), 6.09 (1H, s, H-6), 5.41 (1H, dd, J = 3.0, 12.7 Hz, H-2), 5.14 (1H, t, J = 7.1 Hz, H-2″), 5.06 (1H, t, J = 6.8 Hz, H-7″), 3.85 (3H, s, 7-OCH₃), 3.25 (2H, d, J = 7.1 Hz, H-1″), 3.04 (1H, dd, J = 12.7, 17.1 Hz, H-3_{ax}), 2.81 (1H, dd, J = 3.0, 17.1 Hz, H-3_{eq}), 2.02 (2H, m, H-6″), 1.94 (2H, m, H-5″), 1.64 (3H, s, CH₃-9″), 1.61 (3H, s, CH₃-4″), 1.56 (3H, s, CH₃-10″); ¹³C NMR (CDCl₃) δ 196.3 (C-4), 165.8 (C-7), 162.7 (C-5), 158.8 (C-8a), 138.9 (C-1′), 134.9 (C-3″), 131.2 (C-8″), 128.8 (C-3′, 5′), 128.5

(C-4'), 126.2 (C-2', 6'), 124.4 (C-7''), 122.4 (C-2''), 109.2 (C-8), 103.0 (C-4a), 92.5 (C-6), 78.7 (C-2), 55.9 (7-OCH₃), 43.5 (C-3), 39.8 (C-5''), 26.7 (C-6''), 25.7 (C-9''), 21.7 (C-1''), 17.6 (C-10''), 15.9 (C-4''); HRFABMS *m*/z 429.2069 (calcd for $C_{26}H_{30}O_4Na$, 429.2042).

(2S)-6-Geranylpinostrobin (5): pale yellow oil; $[α]^{25}_{D} - 5.3$ (*c* 0.74, CHCl₃); IR ν_{max} 3500, 1630, 1510, 1430, 1200, 1050, 930 cm⁻¹; CD (*c* 2.461 × 10⁻⁴ M, EtOH) [θ]₂₈₈ -580, [θ]₂₇₆ +510; ¹H NMR (CDCl₃) δ 12.04 (1H, s, 5-OH), 7.42 (5H, m, Ph-H), 6.09 (1H, s, H-8), 5.41 (1H, dd, *J* = 3.0, 13.2 Hz, H-2), 5.18 (1H, t, *J* = 7.1 Hz, H-2"), 5.07 (1H, t, *J* = 7.1 Hz, H-7"), 3.85 (3H, s, 7-OCH₃), 3.27 (2H, d, *J* = 7.1 Hz, H-1"), 3.09 (1H, dd, *J* = 13.2, 17.1 Hz, H-3_{ax}), 2.81 (1H, dd, *J* = 3.0, 17.1 Hz, H-3_{eq}), 2.04 (2H, m, H-6"), 1.96 (2H, m, H-5"), 1.76 (3H, s, CH₃-4"), 1.64 (3H, s, CH₃-9"), 1.54 (3H, s, CH₃-10"); ¹³C NMR (CDCl₃) δ 195.8 (C-4), 165.6 (C-7), 161.4 (C-8a), 160.4 (C-5), 138.6 (C-1'), 135.1 (C-3"), 131.2 (C-8"), 128.9 (C-3',5'), 126.2 (C-2',6'; C-4'), 124.5 (C-7"), 122.2 (C-2"), 110.2 (C-6), 102.9 (C-4a), 91.0 (C-8), 79.4 (C-2), 55.9 (7-OCH₃) 43.5 (C-3), 39.9 (C-5"), 26.7 (C-6"), 25.7 (C-9"), 21.0 (C-1"), 17.7 (C-10"), 16.1 (C-4"); HRFABMS *m*/*z* 407.2209 (calcd for C₂₆H₃₁O₄, 407.2222).

 (\pm) -6-Methoxypanduratin A (6): pale yellow amorphous solid; $[\alpha]^{25}$ _D 0 (*c* 11.2, CHCl₃); IR ν_{max} 3500, 1620, 1520, 1420, 1200, 1050, 930 cm⁻¹; ¹H NMR (CDCl₃) δ 13.94 (1H, s, 2-OH), 7.19 (3H, m, H-2^{'''},6^{'''}; H-4^{'''}), 7.09 (2H, m, H-3^{'''},5^{'''}), 5.98 (1H, d, J = 2.4 Hz, H-3), 5.94 (1H, d, J = 2.4 Hz, H-5), 5.42 (1H, br s, H-4'), 4.86 (1H, t, J = 7.1 Hz, H-2"), 4.49 (1H, dd, J = 4.6, 11.2 Hz, H-1'), 3.91 (3H, s, 6-OCH₃), 3.79 (3H, s, 4-OCH₃), 3.42 (1H, ddd, J = 6.4, 11.2, 11.2 Hz, H-6'), 2.50 (1H, m, H-2'), 2.40 (1H, m, H-5'b), 2.24 (1H, m, H-1"b), 2.10 (1H, m, H-5'a), 2.06 (1H, m, H-1"a), 1.77 (3H, s, 3'-CH₃), 1.55 (3H, s, CH₃-4"), 1.51 (3H, s, CH₃-5"); ¹³C NMR (CDCl₃) δ 206.3 (C-7), 168.0 (C-2), 165.4 (C-4), 162.1 (C-6), 147.1 (C-1""), 137.3 (C-3'), 131.8 (C-3"), 128.3 (C-3"',5"'), 127.0 (C-2"',6"'), 125.6 (C-4"'), 124.2 (C-2"), 120.9 (C-4'), 106.7 (C-1), 93.9 (C-3), 90.9 (C-5), 55.7 (6-OCH₃), 55.5 (4-OCH₃), 54.2 (C-1'), 42.6 (C-2'), 37.1 (C-6'), 35.8 (C-5'), 28.9 (C-1"), 25.7 (C-4"), 22.9 (3'-CH₃), 17.9 (C-5"); HRFABMS m/z 421.2378 (calcd for C₂₇H₃₃O₄, 421.2379).

(2S)-7,8-Dihydro-5-hydroxy-2-methyl-2-(4"-methyl-3"-pentenyl)-8-phenyl-2H,6H-benzo[1,2-b:5,4-b']dipyran-6-one (7): pale yellow amorphous solid; $[\alpha]^{25}_{D}$ –12.1 (c 1.10, CHCl₃); IR ν_{max} 3500, 1630, 1450, 1380, 1100, 900 cm⁻¹; CD (c 2.562 × 10⁻⁴ M, EtOH) $[\theta]_{320}$ +34, [θ]₂₉₀ -2813; ¹H NMR (CDCl₃) δ 12.28 (1H, s, 5-OH), 7.40 (5H, m, Ph-H), 6.66 (1H, d, J = 10.2 Hz, H-4), 5.96 (1H, s, H-10), 5.44 (1H, d, *J* = 10.2 Hz, H-3), 5.41 (1H, dd, *J* = 3.2, 13.0 Hz, H-8), 5.08 (1H, t, J = 7.2 Hz, H-3"), 3.07 (1H, dd, J = 13.0, 17.1 Hz, H-7_{ax}), 2.81 (1H, dd, J = 3.2, 17.1 Hz, H-7_{eq}), 2.08 (2H, dd, J = 7.2, 15.9 Hz, H-2"), 1.75 and 1.62 (each 1H, m, H-1"), 1.66 (3H, s, CH₃-5"), 1.57 $(3H, s, CH_3-6'')$, 1.40 $(3H, d, J = 2.4 Hz, 2-CH_3)$; ¹³C NMR (CDCl₃) δ 195.7 (C-6), 162.6 (C-9a), 162.4 (C-10a), 158.4 (C-5), 138.5 (C-1'), 131.9 (C-4"), 128.9 (C-3',5'), 126.1 (C-2',6' and C-4'), 125.1 (C-3), 123.8 (C-3"), 115.8 (C-4), 102.9 (C-4a), 102.8 (C-5a), 96.0 (C-10), 80.9 (C-2), 79.1 (C-8), 43.4 (C-7), 41.8 (C-1"), 27.3 (2-CH₃), 25.7 (C-5"), 22.6 (C-2"), 17.6 (C-6"); HRFABMS m/z 391.1880 (calcd for C₂₅H₂₇O₄, 391.1909).

In vitro Preferential Cytotoxicity under Nutrient-Deprived Condition. In vitro preferential cytotoxicity (PC100) of crude extracts and isolated compounds was determined by the procedure previously described by Izuishi et al.1 Briefly, PANC-1 human pancreatic cancer cells were seeded in 96-well plates (2 \times 10⁴ per well) and incubated in fresh Dulbecco's modified Eagle's medium (DMEM; Nissui Pharmaceuticals, Tokyo, Japan) at 37 °C under 5% CO2 and 95% air for 24 h. The nutrient-deprived medium (NDM) was prepared following the procedure described by Izuishi et al.¹ After the cells were washed with PBS (Nissui Pharmaceuticals), the medium was changed to either DMEM or NDM and serial dilutions of the test samples were added. After 24 h incubation, the cells were washed with PBS, and 100 μ L of DMEM containing 10% WST-8 cell counting kit (Dojindo; Kumamoto, Japan) solution was added to the wells. After 2 h incubation, the absorbance at 450 nm was measured. The crude extracts were tested at 10, 50, 100, and 200 μ g/mL concentrations, while the pure isolates were tested ranging from 1 to 256 μ M. Cell viability was calculated from the mean values of data from three wells by using the following equation:

Acknowledgment. This work was supported in part by a grant from the Ministry of Health and Welfare for the Second-Term Comprehensive 10-year Strategy for Cancer Control and Grants-in Aid for Cancer Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information Available: Figure S1 showing structures of known compounds **21–24**, Figure S2 for COSY (bold lines) and HMBC ($^{1}H \rightarrow ^{13}C$) (arrows) correlations in **5** (a), **6** (b), and **7** (c), and Figure S3 showing the CD spectra of **3**. This information is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- Izuishi, K.; Kato, K.; Ogura, T.; Kinoshita, T.; Esumi, H. Cancer Res. 2000, 60, 6201–6207.
- (2) Lu, J.; Kunimoto, S.; Yamazaki, Y.; Kaminishi, M.; Esumi, H. Cancer Sci. 2004, 95, 547–552.
- (3) Awale, S.; Lu, J.; Kalauni, S. K.; Kurashima, Y.; Tezuka, Y.; Kadota, S.; Esumi, H. *Cancer Res.* 2006, *66*, 1751–1757.
- (4) Awale, S.; Nakashima, E. M. N.; Kalauni, S. K.; Tezuka, Y.; Kurashima, Y.; Lu, J.; Esumi, H.; Kadota, S. *Bioorg. Med. Chem. Lett.* 2006, *16*, 581–583.
- (5) Kress, W. J.; DeFilipps, R. A.; Farr, E.; Kyi, Y. Y. A Checklist of the Trees, Shrubs, Herbs, and Climbers of Myanmar; Contributions from the United States National Herbarium, Vol 45; Department of Systematic Biology - Botany, National Museum of Natural History: Washington, DC, 2003; p 120.
- (6) The Traditional Medicine Formulations used in Myanmar Traditional Medicine; Department of Traditional Medicine, Ministry of Health: Myanmar, 1990; pp 81–82.
- (7) Tuchinda, P.; Reutrakul, V.; Claeson, P.; Pongprayoon, U.; Sematong, T.; Santisuk, T.; Taylor, W. C. *Phytochemistry* **2002**, *59*, 169–173.
- (8) Trakoontivakorn, G.; Nakahara, K.; Shinmoto, H.; Takenaka, M.; Onishi-Kameyama, M.; Ono, H.; Yoshida, M.; Nagata, T.; Tsushida, T. J. Agric. Food Chem. 2001, 49, 3046–3050.
- (9) Sawangjaroen, N.; Subhadhirasakul, S.; Phongpaichit, S.; Siripanth, C.; Jamjaroen, K.; Sawangjaroen, K. *Parasitol. Res.* 2005, 95, 17– 21.
- (10) Cheenpracha, S.; Karalai, C.; Ponglimanont, C.; Subhadhirasakul, S.; Tewtrakul, S. *Bioorg. Med. Chem.* **2006**, *14*, 1710–1714.
- (11) Hwang, J. K.; Chung, J. Y.; Baek, N. I.; Park, J. H. Int. J. Antimicrob. Agents 2004, 23, 377–381.
- (12) Yun, J. M.; Kwon, H.; Hwang, J. K. Planta Med. 2003, 69, 1102– 1108.
- (13) Panthong, A.; Tassaneeyakul, W.; Kanjanapothi, D.; Tuntiwachwuttikul, P.; Reutrakul, V. *Planta Med.* **1989**, *55*, 133–136.
- (14) Yun, J. M.; Kweon, M. H.; Kwon, H.; Hwang, J. K.; Mukhtar, H. Carcinogenesis 2006, 27, 1454–1464.
- (15) Shindo, K.; Kato, M.; Kinoshita, A.; Kobayashi, A.; Koike, Y. *Biosci. Biotechnol. Biochem.* **2006**, *70*, 2281–2284.
- (16) Pandji, C.; Grimm, C.; Wray, V.; Witte, L.; Proksch, P. *Phytochemistry* 1993, 34, 415–419.
- (17) Johannes, R.; Margit, G.; Kalman, S.; Istvan, N. Arch. Pharm. 1976, 309, 152–155.
- (18) Tuntiwachwuttikul, P.; Pancharoen, O.; Reutrakul, V.; Byrne, L. T. *Aust. J. Chem.* **1984**, *37*, 449–453.
- (19) Bandaranayake, W. M.; Crombie, L.; Whiting, D. A. J. Chem. Soc. (C) 1971, 804–810.
- (20) Wang, Y.; Tan, W.; Li, W. Z.; Li, Y. J. Nat. Prod. 2001, 64, 196–199.
- (21) Jaipetch, T.; Kanghae, S.; Pancharoen, O.; Patrick, V. A.; Reutrakul, V.; Tuntiwachwuttikul, P.; White, A. H. Aust. J. Chem. 1982, 35, 351– 361.
- (22) Mahidol, C.; Tuntiwachwuttikul, P.; Reutrakul, V.; Taylor, W. C. Aust. J. Chem. 1984, 37, 1739–1745.
- (23) Dharmaratne, H. R. W.; Nanayakkara, N. P. D.; Khan, I. A. *Phytochemistry* **2002**, *59*, 429–433.
- (24) Agrawal, P. K.; Thakur, R. S.; Bansal, M. C. In *Carbon-13 NMR of Flavonoids*; Agrawal, P. K., Ed.; Elsevier: Amsterdam, 1989; *39*, 127–128.
- (25) Gu, J. Q.; Park, E. J.; Vigo, J. S.; Graham, J. G.; Fong, H. H. S.; Pezzuto, J. M.; Kinghorn, A. D. J. Nat. Prod. 2002, 65, 1616–1620.
- (26) Itokawa, H.; Morita, M.; Mihashi, S. Phytochemistry 1981, 20, 2503– 2506.
- (27) Norbedo, C.; Ferraro, G.; Coussio, J. D. J. Nat. Prod. **1981**, 45, 635–636.
- (28) Abegaz, B. M.; Ngadjui, B. T.; Dongo, E.; Ngameni, B.; Nindi, M. N.; Bezabih, M. *Phytochemistry* **2002**, *59*, 877–883.

Bioactive Secondary Metabolites from Boesenbergia pandurata

The Journal of Natural Products, 2007, Vol. 70, No. 10 1587

- (29) Bohlmann, F.; Hoffmann, E. Phytochemistry 1979, 18, 1371-1374.
- (30) Berova, N.; Nakanishi, K. In *Circular Dichroism: Principles and Applications*; Berova, N., Nakanishi, K., Woody, R. W., Eds.; John Wiley & Sons Inc.: New York, 2000; pp 337–382.
 (31) Harada, N.; Nakanishi, K. *J. Am. Chem. Soc.* **1969**, *91*, 3989–3991.
- (32) Gaffield, W. Tetrahedron 1970, 26, 4093-4108.

- (33) Sohn, J. H.; Han, K. L.; Lee, S. H.; Hwang, J. K. Biol. Pharm. Bull. 2005, 28, 1083-1086.
- (34) Kiat, T. S.; Pippen, R.; Yusof, R.; Ibrahim, H.; Khalid, N.; Rahman, N. A. Bioorg. Med. Chem. Lett. 2006, 16, 3337-3340.

NP070286M